
05h00201

ERDC MSRC PET Technical Report No. 01-09

Developing Multi-Threaded Fortran
Applications Using the PARSA Software

Development Environment

by

Jeff Marquis
Geoffrey Wossum

30 April 2001

Work funded by the Department of Defense
High Performance Computing Modernization Program
U.S. Army Engineer Research and Development Center
Major Shared Resource Center through

Programming Environment and Training

Supported by Contract Number: DAHC94-96-C0002
Computer Sciences Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of Defense position, policy, or decision
unless so designated by other official documentation.

Developing Multi-Threaded Fortran Applications Using the
PARSA™ Software Development Environment

Jeff Marquis and Geoffrey Wossum

Prism Parallel Technologies, Inc. The University of Texas at Arlington
835 East Lamar Boulevard #161 Computer Science and Engineering Department

Arlington, TX 76011 P.O. Box 19015
www.PrismPTI.com Arlington, TX 76019

marquis@PrismPTI.com www.cse2.uta.edu
 gpw0341@omega.uta.edu

1 Introduction
This paper presents how multi-threaded Fortran applications are developed using the PARSA™ Software
Development Environment. The PARSA programming methodology and its associated tools give DoD
HPC users an easy-to-use, fast and efficient method for developing Fortran projects that exploit the
resources of shared memory systems.

The paper begins with a brief introduction to threading, and how threads efficiently exploit the resources of
shared memory systems. The paper then states that developing multi-threaded projects using directives-
based programming methods puts additional development requirements on programmers, driving up the
cost, time and expertise needed to develop software projects.

This is followed by an introduction to the PARSA programming methodology, which does not put
additional development requirements on software projects but produces scalable and efficient multi-
threaded software. The PARSA programming methodology is then shown to allow programmers to exploit
many different forms of parallelism using different types of graphical objects supported by PARSA. This is
followed with an in-depth presentation of the PARSA source code generator and the ThreadMan™ Thread
Manager, two integral components of the PARSA programming methodology. A Fortran-Pthreads
application programming interface (API) is introduced that allows PARSA programmers to embed Fortran-
like threading directives into their Fortran projects if needed. An example Fortran project is then presented
that demonstrates how easily multi-threaded Fortran projects can be developed in PARSA. Finally, a
summary is presented and conclusions are drawn.

2 Multi-Threading
Threading is an effective way to exploit the resources of shared memory computer systems. Applications
can spawn threads to execute concurrently on shared memory systems. If the system executing the
application has multiple processors, the threads will be distributed by the operating system to execute on
different processors resulting in improved run time performance. Further, applications can spawn more
threads than the system has processors without significant performance degradations because threads are
lightweight processes that efficiently time share resources. Further still, data can be passed to threads in an
efficient manner utilizing the shared memory resources of the system. Hence, threading is an effective and
efficient method for exploiting the resources of shared memory systems.

A more programmer-friendly way of developing multi-threaded Fortran applications is supported by the
PARSA Software Development Environment. PARSA programmers are abstracted from the low-level
details of threading while producing the scalable run time benefits of multi-threaded software.

3 The PARSA Programming Methodology
The PARSA programming methodology [4, 5, 6] is a unique graphical programming method that allows
multi-threaded software to be developed quickly and easily. The PARSA programming methodology is
based on object-based programming principals to facilitate the modular development of multi-threaded
software projects so they can execute safely and reliably on multi-threaded systems. Developing multi-
threaded software has unique requirements, and the PARSA programming methodology specifically meets
these unique requirements.

Projects developed in PARSA consist of graphical objects (or GOs) and arcs. When a new project is being
developed in PARSA graphical objects are added to the project. Each graphical object represents a project
task to be performed. When a graphical object is added to a project, the interface the graphical object will
have with other project graphical objects must be defined. This is done via the GO Properties Panel; each
type of graphical object has unique properties that are discussed briefly below. Regardless of which type of
graphical object is being added to a project, the interface properties define the interface “contract” that a
graphical object has with other graphical objects in a project. Specifically, the interface defines the data an
object is dependent on for execution (referred to as INPUT variables) and the data produced by an object
that is needed by other project graphical objects (referred to as OUTPUT variables).

Graphically, graphical objects appear as graphical object icons in the PARSA Project Explorer. For each
INPUT variable an INPUT port appears along the top edge of the icon. Similarly, for each OUTPUT
variable an OUTPUT port appears along the bottom edge of the icon. Hence, the interface properties of a
graphical object are represented graphically as ports on the graphical object’s icon. An example graphical
object icon with 3 INPUT ports and 2 OUTPUT ports is shown in Figure 1.

Figure 1. A PARSA graphical object icon with 3 INPUT ports and 2 OUTPUT ports.

PARSA supports different types of graphical objects that each have unique semantic representations.
Regardless of the type of graphical object the interface appears the same. That is, each INPUT variable
results in an INPUT port on the icon and each OUTPUT variable results in an OUTPUT port on the icon.
To simplify this introductory presentation of PARSA the graphical objects discussed in this section are task
graphical objects. The other types of graphical objects and the forms of parallelism they exploit are
described later.

A task graphical object, as its name implies, is simply a task to be performed within a project. The task to
be performed is programmed by the programmer in a standard programming language. PARSA v2.0
currently supports C and Fortran. This paper presents the PARSA-Fortran. For more information about

Semantically, each task graphical object is an independent, schedulable entity within a project that will be
spawned as a thread at run time. As such, multiple graphical objects can be executing concurrently at any
given time. Therefore, it is imperative that graphical objects execute without adversely affecting the
execution of other graphical objects that may be executing at the same time. Similarly, graphical objects
must not be adversely affected by the execution of other graphical objects executing at the same time. The
phenomenon where one object (or thread) adversely affects other objects (threads) executing concurrently
on a multi-threaded system is known as a side effect. The PARSA programming methodology and
graphical objects provide an easy-to-use framework for developing side effect free multi-threaded software.

It is intended for graphical objects to be programmed without reference to the target system that will
ultimately execute the project, including threading directives. That is, the task performed by a graphical
object should be generic code and not include code that is intrinsic to a specific multi-threaded system.
There are two important reasons for this:

• First, graphical objects are intended to be computational building blocks that can be re-used within a
project and in different projects. If a graphical object is programmed with system-specific code it will
limit the re-usability of that object.

• Second, projects developed in PARSA can be easily ported to a wide range of systems if the graphical
objects do not contain system-specific code. If even a single graphical object within a project contains
system-specific code, the portability of the entire project will be jeopardized.

For these reasons, PARSA programmers are urged to refrain from programming system-specific code into
graphical objects. If programmers refrain from embedding system-specific code into their graphical objects
then the graphical objects can be re-used between different projects and the projects can be ported to a wide
range of systems supported by the ThreadMan Thread Manager [7, 8].

The interaction between graphical objects is specified graphically with arcs. Arcs connect source graphical
object OUTPUT ports to destination graphical object INPUT ports. Graphically, arcs are simply lines
connecting a desired OUTPUT port to a desired INPUT port. Semantically, however, arcs represent data
“flowing” or “being passed” from a source graphical object to a destination graphical object. At run time
data is passed from the thread of the source graphical object to the thread of the destination graphical
object. The PARSA source code generator produces the data structures and code needed to pass data
between threads according the graphical configuration of graphical objects and arcs. Figure 2 shows a
project in the PARSA Project Explorer with arcs showing the relationship between graphical objects.

Using arcs to specify the relationship between graphical objects eliminates the need for PARSA
programmers to generate the code needed to pass data between graphical objects. This is an important
feature of the PARSA programming methodology:

• It reduces the amount of code that must be generated by PARSA programmers. This reduces project
development time and cost.

• The code to pass data between graphical objects in a multi-threaded system can be sophisticated and
complex. Eliminating the need for PARSA programmers to generate data passing code by hand
reduces the complexity of developing multi-threaded software.

• The PARSA source code generator is fully automated. Therefore, data passing code is consistently and
reliably generated every time project source code is produced. This increases the reliability of software
projects developed in PARSA.

4 The PARSA Execution Model
The PARSA execution model is this: A graphical object is eligible for execution when all of its INPUT data
is available. In other words, a graphical object cannot execute until all the graphical objects that it is
dependent upon for data have finished executing and their OUTPUT data is available. If a graphical object
does not have any INPUT variables declared (i.e., a graphical object has no INPUT ports), then it is eligible
for execution when the project begins executing. Therefore, the graphical representation of a project
implicitly defines the order of execution of the graphical objects in the project.

Using this definition it is an easy and informative exercise to determine how the sample project shown in
Figure 2 will execute. The graphical object named inputGo has no INPUT ports, and therefore can execute
when the project begins executing. Once inputGo has finished executing Go1 and Go2 are eligible for
execution. If the system executing the project has multiple processors then Go1 and Go2 can execute
concurrently on different processors, and likely will. That is, at run time two threads will be spawned – one
for Go1 and one for Go2. Concurrently executing threads reduces the execution time of projects. If the
system executing the project has a single processor then Go1 and Go2 will share the processor’s cycles
until each completes execution. For the purposes of this discussion we assume the system executing this
project has multiple processors and Go1 and Go2 will execute concurrently on different processors.

If Go1 executes for a relatively long time compared to Go2, then Go2 will finish executing before Go1. In
this case, the OUTPUT data generated by Go2 will be available for Go3 and Go4. However, Go3 and Go4
cannot begin executing because they are dependent on data generated by Go1. Hence, Go3 and Go4 will
not be eligible for execution until Go1 finishes executing. Once Go1 finishes executing Go3, Go4 and Go5
are eligible for execution, and they can execute concurrently on separate processors. When Go3 and Go4
finish executing Go6 can then execute, and when Go5 finishes executing then Go7 can execute. Finally,
when Go6 and Go7 finish executing outputGo can execute.

On the other hand, if Go2 executes for a relatively long time compared to Go1, then Go1 will finish
executing before Go2. In this case, the OUTPUT data generated by Go1 will be available for Go3, Go4 and
Go5. Because Go5 is dependent only on data generated by Go1 it is eligible for execution when Go1
finishes executing, and Go5 will begin executing while Go2 is still executing. When Go5 finishes
executing then Go7 can begin. Only after Go2 has finished executing will Go3 and Go4 be eligible for
execution, and Go3 and Go4 must finish executing before Go6 is eligible for execution. Finally, outputGo
will be eligible for execution when both Go6 and Go7 have finished executing.

It is interesting to note that this analysis was performed without knowing what tasks each of the graphical
objects in this project perform and without knowing exactly what data is passed between the graphical
objects. Hence, PARSA’s graphical programming methodology aids in the conceptual understanding of
projects, which makes software maintenance easier and less cumbersome. Of course, the lower-level details
of a project can always be viewed and modified as needed.

It is also interesting to note that PARSA programmers need not concern themselves with the relative
execution times of the graphical objects within a project. The PARSA execution model enforces the data
dependencies specified with the project’s arcs and ensures the graphical objects will execute in the proper
order. Therefore, PARSA programmers do not need to manage the coordination of projects or generate the
code to do so. As this analysis shows arcs represent not only data being passed between graphical objects
but also implicitly control the execution of graphical objects in a project.

5 Graphical Object Types

Figure 3. The Task GO Properties Panel and the code associated with a graphical object.

Notice the Interface tab of the Task GO Properties Panel is shown in Figure 3. This is where the interface a
task graphical object has with other graphical objects is specified. The interface is simply a collection of
variable declarations. Notice the interface has 3 INPUT variables, several LOCAL variables, and 2
OUTPUT variables. The graphical icon for this graphical object would look similar to that shown in Figure
1. Notice the code associated with this graphical object is programmed in Fortran without any threading
directives, data passing code, or thread management and coordination code. This makes programming task
graphical objects similar to programming subroutines in Fortran.

Because task graphical objects can be programmed to perform any programmer-defined task the granularity
of task graphical objects can vary widely from a simple piece of code to a complex and sophisticated
routine. Therefore, at run time task graphical objects execute in an irregular manner as the run time analysis
of the project shown in Figure 2 illustrated. Hence, task graphical objects allow PARSA programmers to
exploit irregular parallelism in their software projects.

Task graphical objects can be programmed to perform asynchronous tasks. That is, a task graphical object

5.2 Forall Graphical Objects
Many large-scale commercial and scientific projects spend a large percentage of their time executing loops.
To reduce the amount of time spent in loops that execute in a regular manner PARSA supports forall
graphical objects. PARSA forall graphical objects allow PARSA programmers to exploit regular
parallelism in their software projects. Note that regular parallelism is also commonly referred to as data
parallelism and loop level parallelism. Throughout this paper regular parallelism is synonymous with data
parallelism and loop level parallelism.

In the same modular manner that task graphical objects are programmed, forall graphical objects have
programmer-generated code associated with them. The code associated with a forall graphical object is the
code that would be in the body of a DO loop in Fortran. Forall graphical objects also have properties that
define the graphical object name, the interface the graphical object has with other graphical objects in a
project, the parsa_forall statement, and file properties that control how PARSA stores the information
related to the graphical object. The parsa_forall statement is similar to the Fortran DO statement in that it
has three expressions as shown below.

parsa_forall e1, e2, e3

Notice the keyword parsa_forall is used in place of the Fortran DO keyword. Expressions e1, e2 and e3 are
the forall loop initialization, test and reinitialization expressions, respectively. The parsa_forall statement
expressions define the number of threads that get spawned at run time. That is, at run time the parsa_forall
expressions are used to spawn multiple threads, where each spawned thread will execute the body code
associated with a forall graphical object.

At run time each spawned thread is passed a unique value of the forall loop control variable (the left hand
side of the parsa_forall statement expressions). PARSA programmers can reference the loop control
variable in the body code to programmatically control which regions of INPUT and OUTPUT arrays are
accessed and modified by each thread in the same way loop control variables are used in the body of
sequential DO loops. Notice that PARSA forall graphical objects do not require programmers to specify
how data is distributed to regularly parallel sections of code (such as is supported by High Performance
Fortran). Rather, array data is passed to the body threads by reference, and the loop control variable is used
programmatically to ensure each thread accesses and modifies unique, non-overlapping regions of the
arrays. Scalar values are passed to the body threads by value, and each thread has a local copy of scalar
INPUT and OUTPUT variable.

It should be emphasized that the body code associated with a forall graphical object must perform
independent operations. The requirement that allows regular parallelism within a project to be exploited is
that each iteration of a loop must be independent of all other iterations of the looping construct. That is,
each iteration of a loop must not rely on the results generated by a previous iteration of the loop. Regular
parallelism is most commonly found in looping structures that operate on and produce array data, database
records and individual files.

The example presented in Section 9 demonstrates the details of programming forall graphical objects.

The PARSA source code generator converts forall graphical objects into source code that will spawn the
number of threads defined by the parsa_forall statement. That is, the parsa_forall expressions determine
the number of threads that will be spawned at run time. The threads will safely execute concurrently on a
shared memory system improving the run time performance of the looping structure.

hierarchy to view and modify the graphical objects and arcs encapsulated by a composite graphical object.
Because composite graphical objects add hierarchy to projects, composite graphical objects provide support
for exploiting hierarchical parallelism. The PARSA GO Browser provides a useful way to view project
hierarchy as shown in Figure 4.

Figure 4. The PARSA GO Browser.

Notice that the composite graphical object foo encapsulates multiple graphical objects (Go1 and Go2). At
the highest level of the project hierarchy only the composite graphical object foo is visible. The composite
graphical object foo itself encapsulates other graphical objects that can be viewed and modified by double
clicking on the composite graphical object as shown in Figure 5.

The graphical objects CompositeInputs and CompositeOutputs are encapsulated by every graphical object
and act at the conduit for passing data between the hierarchical levels of projects. Composite graphical
objects can encapsulate any of the graphical object types supported by PARSA. That is, composite
graphical objects can exploit all forms of parallelism that PARSA exploits, but in a hierarchical manner.

Arcs are used to specify the relationship between graphical objects encapsulated by a composite graphical
object in the same manner described above. Arcs in composite graphical objects specify data being passed
between graphical objects encapsulated by a composite graphical and implicitly control the order that the
graphical objects will execute.

The PARSA source code generator produces the code needed to support hierarchical parallelism. The
ThreadMan Thread Manager manages the execution of the graphical objects encapsulated by a composite
graphical object. Each graphical object encapsulated by a composite graphical object will execute
according to the semantic representation of its graphical object type.

5.4 While Graphical Objects
The PARSA while graphical object is a special type of composite graphical object that allows PARSA
programmers to easily exploit repeat parallelism in their projects. The while graphical object supports
repeat parallelism by encapsulating a collection of graphical objects in the same way composite graphical
objects do. However, while graphical objects have loop control capabilities that will repeatedly execute the

While graphical objects can encapsulate any of the graphical object types supported by PARSA. That is,
the body of a while graphical object can include task, forall, composite and while graphical objects. Arcs
are used to specify the relationship between the graphical objects in the body of a while graphical object.

Figure 5. The “inside” view of a composite graphical object.

Arcs represent data being passed between graphical objects and control the order that the graphical objects

Notice that dependencies can exist between loop iterations. Therefore, the order of execution of loop
iterations must be maintained. The data that is modified between loop iterations that is needed in
subsequent iterations are specified as UPDATE variables on the Interface tab of the While GO Properties
Panel. Figure 6 shows the While tab of the While GO Properties Panel and the inside view of a while
graphical object in the PARSA Project Explorer.

Figure 6. The While GO Properties Panel and the inside view of a while graphical object.

The PARSA source code generator produces source code that supports the semantic representation of while

all forms of parallelism exploitable by PARSA, and PARSA programmers must determine which forms of
parallelism can be exploited in their software projects. However, the PARSA programming methodology
allows programmers to easily exploit these forms of parallelism to create scalable, reliable and efficient
multi-threaded software.

6 Programming a Multi-Threaded Fortran Project
To program a multi-threaded Fortran project in PARSA the File-New option is selected. A project wizard
executes that prompts PARSA programmers to select the project type (currently PARSA supports
application development and multi-threaded function development) and language (currently PARSA
supports C and Fortran). A blank PARSA Project Explorer pops up. To add graphical objects to a project
CLICK on the desired type of graphical object, CLICK on the PARSA Project Explorer canvas, and a
graphical object icon will be added to the canvas.

To program the code associated with a graphical object (task and forall graphical objects) double CLICK
the mouse – a code programming panel will popup. The code associated with the graphical object is
programmed in the code programming panel in the specified language (in the case of this paper, Fortran).
To add graphical objects to composite and while graphical objects double CLICK the mouse button and the
PARSA Project Explorer will expose the inside of the graphical object. Graphical objects are added to
composite and while graphical object in the same manner discussed above. Graphical objects encapsulated
by composite and while graphical objects are programmed in the same manner discussed above. That is,
there are no special rules for programming graphical objects encapsulated by composite and while
graphical objects.

To specify the properties of a graphical object CLICK the right mouse button and select the “Properties”
option from the popup menu. This pops up the GO Properties Panel for the type of graphical object being
edited. For brevity, only the interface properties will be presented here. The interface properties of
graphical objects consist of variable declarations for each piece of data that will be passed to or passed
from a graphical object. The interface properties are programmed as variable declarations in the same
manner variables are declared in a Fortran subroutine. Therefore, specifying the interface properties is as
simple as making variable declarations.

Arcs are added with a left mouse CLICK on a source graphical object OUTPUT port, dragging the mouse
to a destination graphical object INPUT port, CLICK the left mouse button, and the arc will be drawn.

Thus far the mechanical aspects of generating Fortran projects in PARSA have been covered. Another
important aspect of developing projects in PARSA is the logical partitioning of projects in preparation for
using PARSA. The following is a list of issues that PARSA programmers should address to partition their
projects.

• Identify coarse-grained operations. If an application can defined as a collection of coarse-grained
operations that interact with each other then each operation should be specified in PARSA as a
composite graphical object. Notice that at this early stage of development PARSA programmers do not
have to deal with the lower level issues of exactly what types and how many graphical objects will be
encapsulated by the composite graphical objects. Those details can be added later.

• Identify regular parallelism. Regular parallelism should be exploited whenever possible because of its
potential to increase project performance. Application loops should be investigated to determine if they
contain regular parallelism. If an application contains regular parallelism, or it can be modified such
that it contains regular parallelism, then a forall graphical object should be added to the project. Again,

graphical objects in PARSA so they will be executed concurrently at run time. A task graphical object
should be added to the project for each task identified.

Once the analysis has been performed lower level details can be added to the graphical objects. For
example, the name and interface properties might be specified for all graphical objects at the highest level
in the project hierarchy. Once the interface properties are defined the relationship between graphical objects
can be specified by adding arcs between graphical objects. The project composite and while graphical
objects can be analyzed in more detail to determine what types of graphical objects will be contained within
each. The code associated with task and forall graphical objects can be added whenever it makes sense to
do so. This progressive, iterative approach continues until all project details have been specified.

Notice that the iterative approach suggested above is similar to generating an application flowchart.
However, the hierarchal parallelism supported by PARSA requires a third dimension to be added to the
flow chart, which can be easily viewed with the PARSA GO Browser. The generation of a project
flowchart can be written on paper and translated into PARSA or directly put into PARSA. Graphical
objects can always be added to a project, existing graphical objects can be removed, and the properties and
code associated with graphical objects can be modified at any time. Therefore, PARSA programmers can
use PARSA to rapidly prototype applications using an evolutionary programming approach to
incrementally fill in project details over time.

7 The PARSA Source Code Generator and The ThreadMan Thread Manager
Once a project has been specified the graphical representation is converted into multi-threaded source code
by the PARSA source code generator. The programmer-generated graphical object code is used as the
basis of the code produced by PARSA, and is augmented with all structure declarations, data passing code,
threading directives and code needed by the ThreadMan Thread Manager to manage project execution
according to the PARSA execution model.

The PARSA source code generator produces two sets of code for Fortran projects. Figure 7 shows a
graphical depiction of the source code produced by the PARSA source code generator for Fortran projects
and how it interacts with the ThreadMan Thread Manager.

The first thing to notice is that projects developed in PARSA are managed at run time by ThreadMan.
ThreadMan monitors the state of a project and determines when graphical objects are eligible for execution.
When a graphical object becomes eligible for execution (i.e., all INPUT data is available) ThreadMan
spawns the C function (as a thread) associated with the graphical object. Notice that dashed lines indicate
where threads are spawned and exit. The type of graphical object determines what happens next.

Task graphical objects have a C function and a Fortran subroutine generated by the PARSA source code
generator. The C function is spawned as a thread by ThreadMan, and executes thread prologue operations,
calls the Fortran subroutine, and executes thread epilogue operations. The C function is a control
mechanism for managing the execution of the Fortran subroutine within the PARSA execution model. The
Fortran subroutine for a task graphical object unmarshals INPUT data (i.e., assigns INPUT data to local
variable references), executes the programmer-defined task, and marshals (i.e. passes) OUTPUT data to
successor graphical objects. Notice that each task graphical object has a global data structure allocated by
the PARSA source code generator for passing data between graphical objects.

Also notice that all data passing is done by Fortran code eliminating impedance mismatches between C and
Fortran. Doing all data passing in Fortran eliminates compiler compatibility issues between different
combinations of C and Fortran compilers, which are difficult to support universally across a wide range of

is spawned as a thread by the first C function, and acts as the control mechanism for the forall task
subroutine in a manner similar to task graphical objects.

Composite graphical objects have a C function generated by the PARSA source code generator. The C
function performs thread prologue operations, spawns ThreadMan to manage the execution of graphical
objects encapsulated by the composite graphical object, and performs thread epilogue operations. When all
graphical objects encapsulated by a composite have finished executing program control returns to the C
function. Notice that each level of project hierarchy results in ThreadMan being invoked at run time.

T
h
r
e
a
d
M
a
n

Thread prologue
Call Subroutine

Thread epilogue

Unmarshal data
Execute task
Marshal data

Global Data
Structure

Thread prologue
Call Subroutine

Spawn threads

Join threads

Call Subroutine

Thread epilogue

Unmarshal data
Execute task

Global Data
Structure

.
...

..

T
h
r
e
a
d
M

. ..
Thread prologue

spawn

exit

Task GO

C function Fortran
Subroutine

C function

Forall
GO

spawn

Unmarshal data
Allocate memory

Marshal data

Fortran
Subroutine

spawn C function

exit

Call Subroutine

Free memory
exit

Composite
GO

C function
spawn

spawn

exit

exit

While
GO

C function

TRUE?

spawn

T
h
r
e
a
d
M
a
n

. ..spawn

exit

Fortran
Subroutine

Fortran
Subroutine

Thread prologue
Spawn ThreadMan

Thread epilogue

is called repeatedly so long as the loop control condition is true. Each level of project hierarchy results in
ThreadMan being invoked at run time.

As Figure 7 shows the PARSA source code generator produces much of the code needed for Fortran
projects to be multi-threaded. By abstracting programmers from the low-level details of multi-threaded
programming PARSA frees programmers to concentrate on the “what” of their projects, not the “how.”
This is especially important to Fortran programmers who are typically domain experts in technical fields,
not computer scientists. Hence, Fortran programmers can use PARSA to develop efficient and scalable
multi-threaded Fortran projects quickly and easily.

ThreadMan is a dynamic linkable library that manages the execution of projects developed in PARSA as
shown in Figure 7. ThreadMan is an integral component of the PARSA programming methodology that i.)
eliminates the need for PARSA programmers to control the execution of their software projects, ii.) ensures
projects execute according to the PARSA execution model and iii.) makes project source code portable
across a wide range of hardware platforms and operating systems supported by ThreadMan. The source
code produced by the PARSA source code generator is fully compatible with run time management
functions in the ThreadMan library.

As Figure 7 illustrates, ThreadMan is used in numerous situations to control the execution of project
graphical objects. That is, ThreadMan is invoked for each level of project hierarchy. Therefore, ThreadMan
is a critical component of PARSA’s ability to support hierarchical programming and exploiting hierarchical
parallelism.

What is not shown in Figure 7 and should be emphasized is that ThreadMan will spawn threads as they
become eligible for execution. ThreadMan can, and usually will, have multiple threads under its control at
any given time. That is, ThreadMan can concurrently manage multiple threads. This feature produces the
run time performance gains for projects developed in PARSA.

Notice too that ThreadMan makes projects automatically scalable. That is, the same project will scale to
utilize the resources of different systems, and is achieved without the need to recompile project source
code. A project can be compiled once and executed on different systems with varying numbers of
processors installed. For example, a project can be compiled for one operating system and executed on
different systems running that operating system. The number of processors installed on each system will
dictate the run time performance of the project. When executed on a single processor system PARSA
projects typically run in the same amount of time as an equivalent sequential application. When the project
is executed on a multiprocessor system the project will automatically scale to take advantage of the
resources of that system. This allows PARSA programmers to develop projects on development systems
and deploy those projects on more powerful deployment systems without the need to recompile the project.
Automatic scalability is facilitated by ThreadMan.

The code produced by the PARSA source code generator can be easily ported to systems from different
vendors by re-compiling the code for each desired system linking the ThreadMan library for each system.
This allows projects developed in PARSA to be deployed on systems that employ drastically different
threading mechanisms. The most extreme difference between threading mechanisms is between those
supported by the Microsoft Windows operating system and those supported on Unix-based systems. The
threading mechanisms supported by these operating systems are very different syntactically and
semantically. ThreadMan allows projects developed in PARSA to be easily ported between systems as
diverse as Windows and Unix. Hence, abstracting the PARSA-generated source code from native threading
mechanisms allows project source code to be easily ported between different systems by linking in different

8 Embedding Threading Directives Into Projects
There are certain situations when programmers may need or want to embed threading directives into their
Fortran projects being developed in PARSA. The Fortran-Pthreads API from Gabb et al can be used to
embed threading directives into Fortran projects without devising a scheme to directly access the native
threading directives. The Fortran-Pthreads API provides Fortran-like access to the majority of the native
pthreads calls. The Fortran-Pthreads API is available on a wide range of systems ensuring project
portability.

9 An Example Project
To demonstrate how projects are developed in PARSA a simple example is presented. The example, matrix
multiplication, was chosen because of the universal knowledge of the algorithm. Choosing a simple
algorithm allows the presentation to focus on how Fortran projects are developed in PARSA without
getting lost on the details of a sophisticated algorithm. However, such a simple example does not
demonstrate all the features and functionality of PARSA. Those interested in a more detailed presentation
should visit www.PrismPTI.com or contact the authors.

Calculating P(X, Z) = A(X, Y) * B(Y, Z), where A, B and C are arrays, requires three nested DO loops as
shown below.

DO I = 1, X
DO J = 1, Z

 P(I, J) = 0
 DO K=1, Y
 P(I, J) = P(I, J) + A(I, K) * B(K, J)
 END DO
 END DO
END DO

Analyzing this code reveals that the outermost loop contains regular parallelism. That is, the body of the
outer loop calculates a row of matrix P, and each row of matrix P is calculated independent of the
calculations of all other rows. Hence, a forall graphical object can be used to exploit the regular parallelism
of the outer DO loop.

We assume the forall graphical object that will perform the matrix multiplication is part of a larger project.
The arrays A, B, and P will be passed to the forall graphical object along with the array dimensions X, Y
and Z. That is, arrays A, B, P and dimensions X, Y and Z will be INPUT variables to the forall graphical
object. The forall graphical object will populate array P, and will pass array P and dimensions X and Z to
another graphical object in the project. Hence, array P and dimensions X and Z will be OUTPUT variables
of the forall graphical object. The interface tab of the Forall GO Properties Panel is shown in Figure 8.
Notice the forall graphical object needs three loop control variables I, J and K, which are declared as
LOCAL variables.

Notice, the code associated with the forall graphical object is identical to the body code of the outermost
DO loop shown above. The body code of forall graphical objects is the code contained within the body of
the corresponding DO loop being replaced by the forall loop.

The parsa_forall statement simply replaces the DO loop as shown below:

parsa_forall(I = 1; I.LE.X; I = I+1)

Array P, however, is being populated by each thread, and therefore, warrants closer scrutiny to determine if
this is can be done safely. Figure 9 shows the access pattern for each thread. When I is 1 its corresponding
thread populates row 1 of array P, when I is 2 its corresponding thread populates row 2 array P, and so on.
Therefore, it is clear that each spawned thread populates a unique, non-overlapping region of array P.
Therefore, a forall graphical object programmed with the parsa_forall statement above will execute safely.

Figure 8. The Interface tab of the Forall GO Properties Panel and code programming panel for a forall

P
I=1

I=5
I=4
I=3
I=2

. .

number of system processors. The actual performance will vary depending on the granularity of the forall
body code and the loading on the system, but our tests reveal that near linear performance is achievable.

To complete this example project two task graphical objects are added to the project. The first task
graphical object, called AllocAndPopulate, allocates memory for arrays A, B and P based on dimensions X,
Y and Z and populates arrays A and B with random numbers. Arrays A, B and P and dimensions X, Y and
Z are passed as OUTPUT variables from AllocAndPopulate. Figure 10 shows the code associated with
AllocAndPopulate alongside the Interface tab of the Task GO Properties Panel.

Figure 10. The programmer-generated code for AllocAndPopulate alongside the Interface tab of the Task
GO Properties Panel.

The second task graphical object, called DisplayResults, simply prints the values of array P after the forall
has populated the elements. Therefore, DisplayResults receives array P and dimensions X and Z. Figure 11
shows the code associated with the DisplayResults and the Interface tab of the Task GO Properties Panel.

The PARSA source code generator produces the multi-threaded source code for this project. The PARSA-
generated source code is compiled and ThreadMan linked to manage the execution of the graphical objects
at run time.

It is interesting to note that this example was generated simply and easily in PARSA. The code associated
with each graphical object is pure Fortran code with the parsa_forall statement replacing an equivalent DO
statement. The resultant project will automatically scale to take advantage of the resources of a target
shared memory system, but the programmer is not required to know how this is accomplished. The

Figure 11. The programmer-generated code for DisplayResults alongside the Interface tab of the Task GO
Properties Panel.

programmer will simply have a project that scales to utilize the resources of shared memory systems with
little more programming effort than required to program an equivalent sequential application.

stretching development cycles, and requiring programmers to have programming expertise in the use of
threading mechanisms. The PARSA programming methodology was then shown to be an efficient method
for developing multi-threaded software without imposing additional development requirements on
programmers. Therefore, programmers can use PARSA to exploit the scalable run time performance
benefits of multi-threaded software without additional development cost, time or effort.

The PARSA Software Development Environment was shown to be an effective method for exploiting
many different types of parallelism contained within projects. Specifically, it was shown that PARSA
supports irregular, asynchronous, regular, hierarchical and repeat parallelism by supporting different types

Figure 12. Matrix multiplication in the PARSA Project Explorer.

12 References

[1] H.A. Gabb, R.P. Bording, S.W. Bova, C.P. Breshears, “A Fortran 90 Application Programming

Interface to the POSIX Threads Library,” 40th Cray User Group Conference Proceedings, 1998.
[2] C.P. Breshears, H.A. Gabb, S.W. Bova, “Towards a Fortran 90 Interface to Pthreads,” DoD User

Group Proceedings, 1998.
[3] C.P. Breshears, M.R. Fahey, H.A. Gabb, “Application of Fortran Pthreads to Linear Algebra and

Scientific Computing,” Cray User Group, 1999.
[4] The PARSA Software Development Environment v2.0 Programming and Reference Manual For the

Fortran Programming Language, Prism Parallel Technologies, Inc., 2001.
[5] The PARSA Software Development Environment v2.0 – Executive Summary, Prism Parallel

Technologies, Inc., 2001.
[6] The PARSA Software Development Environment v2.0 – A Technical Primer, Prism Parallel

Technologies, Inc., 2001.
[7] The ThreadMan Thread Manager v2.0 – Executive Summary, Prism Parallel Technologies, Inc., 2001.
[8] The ThreadMan Thread Manager v2.0 – A Technical Primer, Prism Parallel Technologies, Inc., 2001.

